Tetrahedron Letters No. 19, pp. 1781-1782, 1967. Pergamon Press Ltd. Printed in Great Britain.

A NEW PHOTOCHEMICAL REACTION OF ORGANO-COBALT(III) COMPLEXES WITH CARBON MONOXIDE IN ALCOHOL

G.Costa and G.Mestroni Department of Chemistry, University of Trieste Trieste,Italy

(Received 16 November 1966; accepted for publication 13 March 1967)

We recently prepared ^{1,2} the new series of stable organometallic derivatives of Co(III) chelates :[R-Co(III)(BAE)L], (R = CH₃, C₂H₅, C₆H₅; BAE = bis(acetylacetone)ethylendiiminato; L = H₂O, pyridine) and [R-Co(III)(salen)L], (R = CH₃, C₂H₅, C₃H₇, C₄H₆, C₆H₅; (salen) = bis(salicylaldehyde)ethylendiiminato; L = NH₃, H₂O, pyridine) by reaction of Co(III) chelates [Co(III)(BAE)L₂]⁺, [Co(III)BAE)LX], [Co(III)(salen)L₂]⁺ or [Co(III)(salen)LX], with the appropriate Grignard reagent.

We now report a new photochemical reaction of the alkyl-cobalt chelates of (salen) with carbon monoxide and the thermal and photochemical cleavage of the cobalt-carbon bond.

When $[R-Co(III)(salen)H_{\bullet}O]$ (R = CH₃, C₄H₅, nC₄H₆) is irradiated with visible light in alcohol solution in the presence of carbon monoxide at atmospheric pressure, the complexes $[R^{\circ}O-C-Co(III)(salen)H_{\bullet}O]$ (R' = CH₃ in methanol, C₄H₅ in ethanol and isoC₃H₇ in isopropyl alcohol solution) are obtained in almost quantitative yield. No reaction was observed in the dark. The products are well characterized, crystalline, stable, orange-yellow compounds. They are identical to those obtained from [Co(II)(salen)] by reduction with 1% sodium amalgam, followed by reaction with ClCOOR' (R' = CH₃, C₄H₅).

The complexes $[RCOCo(III)(salen)H_{1}O]$ which can be obtained from [Co(II)(salen)] by reduction and reaction with RCOCl, are not formed by the photochemical reaction with CO.

Cleavage of the cobalt-carbon bond in the organocobalt complexes of (salen) takes place either by thermal and photochemical reaction. Heating $[RCo(III)(salen)H_{\bullet}0]$ (R = alkyl) in the solid state to 200°C under vacuum gives [Co(II)(salen)] in quantitative yield. Solutions of $[RCo(III)(salen)H_{\bullet}0]$ are light sensitive and formation of [Co(II)(salen)] was observed in anaerobic condition (photoreduction). The Co(II) complex readily undergoes reoxidation to a dicyano-Co(III) derivative in the presence of the CN⁻ ions and air. In the presence of cyanide ions (methanol-water solution, aerobic condition) $[RCo(III)(salen)H_{\bullet}0]$ undergoes both photolysis of Co-C bond and substitution of the trans ligand yielding $[Co(III)(salen)(CN)_{\bullet}]^{-}$. An analogous reaction was reported for the alkyl-cobalt aetioporphyrin I⁻³.

The thermal and photochemical reduction of cobaltic derivatives to cobaltous complex of (salen) takes place by the homolytic cleavage of the Co-C bond as was proposed in the chemistry of vitamin $B_{14}^{4,5}$.

In view of the photochemical reaction of $[RCo(III)(salen)H_aO]$ under anaerobic conditions to give [Co(III)(salen)], the initial cleavage of the Co-C bond in the carbon monoxide reaction is suggested. The subsequent step is likely to be hydrogen abstraction by the methyl group from R'OH followed by carbonyl insertion.

References

1. G.Costa, G.Mestroni, G.Tauzher and L.Stefani, J.Organometal.Chem. 6 181(1966).

2. G.Costa, G.Mestroni and L.Stefani, J.Organometal, Chem., in press.

- 3. D.Dolphin and A.W.Johnson, Chem.Comm. 494 (1965).
- 4. J.M.Pratt, J.Chem.Soc. 5154 (1964).
- 5. D.Dolphin, A.W.Johnson and R.Rodrigo, J.Chem.Soc. 3186 (1964).